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Abstract. A quantum-mechanical model for a multiphoton laser is proposed by an obvious 
generalization of the usual one-photon laser model. In this first paper we restrict our 
considerations to a class of lasers which preserve detailed balance. This condition is 
ensured by assuming a multiphoton loss mechanism for the laser light of the same order as 
the multiphoton gain from the stimulated emission process. Solutions for the stationary 
density operator of the light field are obtained by a straightforward generalization of the 
techniques of Scully and Lamb. The multiphoton laser around threshold exhibits behaviour 
analogous to a second-order phase transition. A non-thermal distribution of multiphoton 
laser light is achieved above threshold. 

1. Introduction 

The phenomenon of laser action involving a one-photon emission in a single atomic 
decay has been satisfactorily explained by quantum theory. Review articles on this 
topic describing alternative but basically equivalent approaches are given by Haken 
(1970), Lax (1968) and Risken (1970). Multiphoton absorption experiments are now 
common and direct observation of two-photon spontaneous emission has been reported 
(Lipeles et al 1965). It is natural, therefore, to consider the possibility of achieving 
laser action involving the stimulated emission of two or more photons in a single atomic 
decay. 

Analyses of the photon statistics of a two-photon emission process (Lambropolous 
1967, McNeil and Walls 1974) have shown that the two-photon emission process is 
considerably more noisy than a single-photon emission process. This may tend to 
suggest that such an amplifier does not have the coherence properties of a laser amplifier 
since it tends to increase the statistical fluctuations of the field. However, these analyses 
did not include pumping and loss mechanisms and hence no conclusions about the 
action of a multiphoton laser may be drawn from them. It is clear, however, from general 
considerations of non-equilibrium thermodynamics (Glansdorff and Prigogine 1971) 
that for high enough values of the driving parameter a non-linear dissipative system 
will undergo a transition to a more highly ordered state. In the laser case the more 
highly ordered state is characterized by a narrower photon distribution than the thermal 
distribution. 

It is our aim to present a fully quantum-mechanical model of a multiphoton laser 
starting from a microscopic Hamiltonian. In this paper we confine our attention to a 
restricted class of multiphoton lasers which preserve detailed balance. 
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2. Model and analytical approach 

The model for the multiphoton laser is an obvious generalization of the usual one-photon 
laser model. We consider M electromagnetic field modes in a resonant cavity interacting 
with a system of N two-level atoms. These atoms are presumed to have an appreciable 
M-photon dipole matrix element. 

The field modes are described by the boson creation and annihilation operators 
bj and bj which obey the commutation relations 

[ b j ,  bl] = 6,. 

The atomic system is described by the operators S - ,  S +  and S ,  which are analogous 
to the spin operators and obey in particular the commutation relations 

[S- ,s+]  = 2S , .  (2.2) 

The free Hamiltonian is given by 

M 
H ,  = h wjbfbj+~ht2S, .  

j =  1 

The sum frequency of the photons in the M field modes is assumed to be in resonance 

The atom-field interaction for an M-photon emission process may be described 
with the frequency separation of the atomic levels (ie Cj"= oj = Q). 

by the effective Hamiltonian (Shen 1967, Walls 1971): 

The coupling constant g'') is proportional to x ' ~ ) ,  the dipole matrix element for 
an M-photon transition between the two atomic states. 

The pumping and loss mechanisms for the atoms are included by coupling the atoms 
individually to thermal reservoirs. The loss mechanism for the laser light is principally 
by transmission through the end mirror. Here we restrict our attention to a laser 
cavity where the end mirror is partially transmitting at the sum frequency X z l  w i  
but totally reflecting at the individual photon frequencies. This M-photon loss mech- 
anism is described by the Hamiltonian 

M M 

(2.5) 

where the rR represent the reservoir operators. 
The restriction to an M-photon loss mechanism is necessary to retain the property 

of detailed balance. (This is lifted in the following paper.) 
I t  is possible, using standard methods developed for the one-photon laser, to derive 

an equation of motion for the density operator or distribution function of the light field. 
Here we adopt the method of Scully and Lamb (1967) and derive an equation of motion 
for pn,- the matrix elements of the reduced density operator for the field in Fock space. 
We consider separately the cases of M-photon emission into a single mode and M-photon 
emission into M modes. 
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3. Single-made M-photon laser 

A straightforward application of the method of Scully and Lamb to the model described 
in 0 2 yields the following master equation for the M-photon single-mode laser : 

where A M ,  BY and CM are the usual gain, non-linear and loss parameters defined by 
Scully and Lamb, except that A M  and B M  are proportional to (g(M))Z that is, to the square 
of the coupling constant for an M-photon dipole transition. 

The steady-state solution of equation (3.1) may be obtained by invoking detailed 
balance considerations. This reduces the second-order difference equations to two 
equivalent systems of first-order difference equation of the form 

Assuming that the initial photon distribution depends only on pmM,,,M (where m 
is an integer), the solution to equation (3.2) is clearly 

PnM+j ,nM+j  = j =  1,2, . . . ,  M - 1  ] 
This distribution exhibits a similar behaviour to that obtained for the one-photon 

laser with the difference that only the multiples of M photon numbers are present. 
This is a consequence of the model chosen where the photons are produced and lost 
only in multiples of M .  

There is a threshold AM 2: C M  below which the distribution rapidly falls away from 
zero and above which the distribution is peaked away from zero. 

Below threshold we find 
l / M  nM 

P n M , n M  E P O . O [  ($) ] (3.4) 

which is a geometric-like distribution (in the variable n M )  with parameter (AM/CM)'IM. 
Well above threshold ( A M / C M  >> I ) ,  we find 

(3.5) 

which is a Poisson-like distribution (in the variable nM)  with parameter (AL/BMCM)'IM. 
Figure 1 compares the photon distribution given by equation (3.3) for a two-photon 

laser with a one-photon laser distribution, both at 20% above threshold, with the non- 
linear parameters chosen to give the same mean. It is interesting to observe that the 
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n (even numbers) 

Figure 1. Photon number distributions 20% above threshold (mean number 20) for: A, 
one-photon laser; B, two-photon two-mode laser; C, two-photon single-mode laser. 

two-photon laser number distribution has approximately the same variance as the one- 
photon laser number distribution. Why this should be is not immediately obvious, 
since the two-photon emission process is noisier than the one-photon emission process. 
These results show that the two-photon damping mechanism is sufficient to inhibit the 
noise, and allow the onset of lasing. 

4. Multimode M-photon laser 

We now consider the case where the M photons are emitted into M different modes. 
This may be achieved in a continuous-wave laser by suitable tuning of the cavity 

or in a pulsed laser by choosing the inverse frequency of the triggering pulse to be other 
than an integral multiple of the frequency of the atomic transition. 

The master equation for the matrix elements pin,) = ( {n i } lp l {n i ) )  of the field density 
operator is readily shown to be 

(4.1) 

The stationary solution to this equation may again be obtained employing considera- 
tions of detailed balance. Since the photons are produced and lost in multiples of M ,  
we have the independent constants of the motion nl - n k  = 0. The stationary solution 
of equation (4.1) is found to be 

M 
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where 

This model of a multimode M-photon laser again has a threshold at A M  N C M .  Below 
threshold 

that is, each mode has a geometric distribution with parameter A M / C M .  
Well above threshold ( A M / C M  >> 1) 

(4.4) 

which is a sharply peaked distribution. 
In figure 1, the photon distribution for two-photon emission into two modes is 

compared with that of two-photon emission into a single mode. A broader photon 
number distribution results from the two-photon emission into a single mode since the 
noise from the spontaneous emission of the first photon is effectively amplified by the 
second photon. Again we find that this particular two-photon laser has a photon 
number distribution which is narrower than the corresponding one-photon laser 
distribution. 

5. Macroscopic behaviour 

In conclusion we shall examine the macroscopic behaviour of the system around thres- 
hold. Close to threshold we may expand the denominator in the master equations and 
take terms up to &/AM only. We may then obtain equations of motion for the mean 
number of photons as follows. 

(i) Single-mode case 

(ii) M-mode case 

If we ignore fluctuations, that is set ( n M )  = ( n ) M  we obtain the macroscopic 
equations. It is readily seen that the multiphoton laser exhibits behaviour analogous 
to a second-order phase transition about threshold in a like fashion to the one-photon 
laser (Graham and Haken 1970, De Giorgio and Scully 1970, Grossman and Ritcher 
1971). The order parameters for this particular type of multiphoton laser are (i) n‘, 
(ii) l-Iz n i .  The behaviour of these quantities as a function of the pumping parameter 
is shown in figure 2. 

In summary, it has been shown that it is possible in principle to achieve non-thermal 
photon distributions from stimulated multiphoton emission. The distributions obtained 
resemble the Poisson distributions characteristic of coherent laser light ; however, only 
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AIC 

Fipre 2. Mean photon number squared as a function of the pumping parameter for a 
two-photon single-mode laser: full curve, macroscopic ; broken curve, as given by the 
photon number distribution. 

photon numbers in multiples of M appear in the distribution. This is a consequence of 
the particular multiphoton laser model chosen to preserve detailed balance. A less 
restricted class of possible multiphoton lasers is considered in the following paper. 

6. Discussion of experimental possibilities 

Though at present no-one has reported achieving two-photon laser amplification, there 
is substantial development work proceeding to this end. One potential scheme under 
development at Livermore was recently reported by Carman et a1 (1974). Other potential 
two-photon lasers are being developed by R Byer (1974, private communication) at 
Stanford and by P Sorokin (1974, private communication) at  IBM. These systems will 
be pulsed single-pass amplifiers and hence it will be necessary to generalize the foregoing 
calculations to a multimode analysis in order to derive information on quantities such 
as the pulse width. 

Interest in developing such two-photon lasers is considerable because of the pos- 
sibility of achieving high light intensities with these systems. This possibility arises 
since the strength of the coupling between the laser-active atoms and the light field is 
now proportional to the light intensity as against the square root of the light intensity 
in the one-photon laser. Thus, once one has achieved sufficient energy storage to over- 
come the relative weakness of the two-photon transition, one has the potential to achieve 
higher laser power than with the usual one-photon laser. 
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